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INTRODUCTION 
 

Many research has been conducted on wear mechanisms and tribology behavior of materials and components such as gear, bearings, 
etc [1-3]. Compliant journal bearings popularly known as foil bearings have gained significant attention in recent years because of 
their unique mode of operation and diversity of applications.  These types of bearings have various advantages compared to the 
conventional rigid journal bearings in terms of higher load carrying capacity, lower power loss, better stability and greater endurance. 
These bearings are self-acting, and can operate with ambient air or any process gas as the lubricating fluid. The need for complex 
lubrication systems is eliminated, which result in significant weight reduction and lower maintenance. Air as a lubricant is available 
abundantly and can operate at elevated temperatures whereas conventional oil-based lubricants fail since their viscosity drops 
exponentially with the rise in temperature. 
Figure (1) represents the configuration of a foil journal bearing. It is comprised of an outer bearing sleeve which houses the corrugated 
series of bumps on a thin foil strip and over the bump foil strip a thin smooth top foil sheet is laid. These foils are welded at leading 
edge and are free at the trailing edge. 

 
Fig. 1 Schematic of Compliant Journal Bearing 

The series of bumps in the strip supports the top foil sheet and acts as a spring bed which makes the bearing compliant (Fig 2).  The 
journal and bearing system are supported by a thin lubricant film (gas) due to the hydrodynamic pressure Distribution. 

 
Fig. 2 Schematic Configuration of Top and Bump Foils 

Blok and VanRossum (1953) first introduced the technical community to foil bearings and investigated a tension type CFB with 
analytical and experimental method [4].  Foil air bearings were first commercialized in the 1970s in air cycle machines used for 



aircraft cabin pressurization [5]. Experimental and theoretical investigations show that foil bearings also offer better stability 
compared to the conventional rigid gas bearings [6]. 
Walowit and Anno first presented an elastic model for a single bump [7]. It was a two-dimensional model in which the bending and 
tensile stiffness of a bump was considered. This structural model was used by Heshmat et al. in an investigation of the steady state 
behavior of a foil bearing [8]. In their investigation, deflection of the foil structure was simplified with the assumption that the 
deflection was proportional to the pressure distribution. Heshmat and Ku showed that compliant journal bearings are able to handle 
greater loads with improvements in the compliant support structures [9]. Heshmat [10] first proposed a double-bump AFB1, in order to 
improve the load capacity, damping [11-13], and stability. He successfully demonstrated the advances in performance at high load 
condition. 
Dellacorte and Valco [14] classified the single-bump AFB as a first-generation bearing and the double-bump AFB as a third-
generation bearing with a higher load capacity. The new set of equations were solved numerically and compared with numerical 
simulations using a finite approximation (Peng and Khonsari, 2004) for rigid bearings and compliant bearings [15]. Reddy was 
performed first considerable numerical analysis by using approximation method as Infinite Long bearing Approximate (ILA), Finite 
Element Method (FEM), and Modified Parabolic Approximate (MPA) [16]. 
The aim of this study is to focus on the modeling and simulation of foil journal bearings with consideration of the elastic behavior of 
the foil and gas compressibility.  To predict the bearing performance parameters, the compressible Reynolds equation is solved based 
on Generalized Differential Quadrature Method (GDQM). The GDQ method reduces the classical Reynolds equation to algebraic 
linear system equations. 
Appropriate equations and numerical solution are developed for treating a compressible Reynolds equation using GDQM. A 
numerical procedure is developed for predicting the foil deformation, operating film thickness and load-carrying capacity of foil 
journal bearings over a large range of operating speeds. The lubricant used is air whose properties are indicated in Table 1 [17] and 
also the properties of foil are indicated in Table 2 [17]. It is worth mentioning that the operating speed is 30,000 rpm. 
 

Viscosity (μ) 184.6×10-7 N.s/m2 
Density (ρ0) 1.1614 kg/m3 

 

Table 1: Lubricant Properties (Air) 
 

Radius of Shaft (R) 19.05×10-3m 
Bearing Length (L) 38.1×10-3m 
Nominal Radial Clearance (C) 50×10-6m 
Top Foil Thickness (tt) 0.1016×10-3m 
Bump Foil Thickness (tb) 0.1016×10-3m 
Bump Pitch (s) 4.572×10-3m 
Bump Length ( 2l ) 3.556×10-3m 
Bump Foil Youngs Modulus ( E ) 200 ×109 Pa 
Bump Foil Poisson’s Ratio (ν ) 0.31 

Table 2: Generation 1 Compliant Bearing Data 

 
The governing equation for pressure distribution with the ideal gas flow in a journal foil bearing is given by the Reynolds equation. 
The standard Reynolds equation is considered by neglecting the time variant. 
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The Reynolds equation of incompressible lubrication in nondimensional form is written as [18]: 

                                                 
1 Air Foil Bearing 
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where Λ represents the compressibility number or the bearing number. 
Although the GDQ method may well be applied to multidimensional problems with physical domains of irregular geometry [19], the 
following discussion is confined to a square domain 10,10  yx , for convenience and due to its suitability to the present 

problem.  The very basis of the differential quadrature method (DQM) rests on approximating the partial derivatives of a function with 
respect to a coordinate direction at any discrete point as the weighted sums of the values of the function at all the discrete points 
chosen in that direction. Thus, nth order partial derivatives of a field variable ),( yx   may be written as: 
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Where Nx is the number of discrete or sampling points in the x-direction of the field variable domain and xn

ijC are the weight-in 

coefficients associated with nth order partial derivative with respect to x at the discrete point xj. . If m=1, namely, for the first order 
derivative. 
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In order to determine the weighting coefficients, the field variable needs to be approximated with some test function; the only 
requirements of the test functions being those of smoothness and differentiability at least to the highest order derivative in the 
differential equation. )(1 xM  is the first derivative of M(x) and they can be defined as: 
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The present coordinate distribution of discrete grid points can be chosen arbitrarily. In this work, the intermediate sampling points 
between x=0 and x=1 are taken from the first order zeros of shifted chebyshev polynomials for polynomial test function. 
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In analogy to the classical quadrature case [19] , the test functions are chosen of the form: 
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Harmonic Test Functions 
Due to the fitting exactness of a polynomial of order AA - 1 to the N sampling points, the choice of a polynomial test function seems 
to be most suitable wherever it can be used. However, there can be situations where a polynomial may be entirely unsuitable. One 
such case is when the field variable \l/(x, y) is periodic in one or more coordinate directions. Assuming the test function to be periodic 
in the x-direction, an appropriate choice of the test functions in the x-direction would be [20]: 
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Application of GDQM to governing equation 
Equation (24) is a nonlinear differential equation and its Solution is obtained via Newton's method [21, 22]. Accordingly, first, the 
iterative process of Newton's method is defined as: 
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where n is the iteration count and the correction η is obtained from the solution of the equation written in the operator form as: 
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In Eq. (15), L(ψ) is the left-hand side of the Reynolds equation, Eq. (3), and L'(ψ) is the Frechet derivative of L(ψ) defined as: 
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On substituting Eq. (3) and the Frechet derivative from Eq. (16) in Eq. (15), one may see that the correction η is governed by the 
following linear differential equation 
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where the superscript (n) is omitted for convenience. Now applying differential quadrature to Eq. (17), one obtains: 
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where i and j refer to a point (xi, yj) in the mesh shown in Fig (3). 

 
Fig. 3 Mesh for differential quadrature solution 

 
For a rigid gas bearing, the functional form of the Non-dimensional film thickness is represented as: 

 cos1 rrh                                                              (19) 

But in case of a foil bearing, since the bushing is compliant, the film thickness is a function of the pressure. 
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Where α represents the compliance number. Note that in Eq. (20) the eccentricity ratio (εf) can be greater than one while maintaining a 
positive minimum film thickness. This is so because as the pressure deforms the top foil, it enlarges the original clearance, providing 
additional room for the shaft to move towards the minimum film thickness, hmin. The arithmetic mean pressure in the axial direction is 
used to calculate the top foil deformation and that the film thickness using Eq-20. 
The solution of Reynolds equation begins by GDQM by an initial guess pressure pij

n, by solving for an incompressible bearing with an 
assumed rigid bearing eccentricity ratio εr and an initial guess for the film thickness 

jih ,
, This is done iteratively until a convergence 

of the pressure is achieved for a given film thickness. Convergence of film thickness is assumed when the relative error of film 
thickness between two successive iterations falls below a tolerance value of 0.1 percent. The next part is to couple the hydrodynamic 
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pressure and the foil structural compliance which has a direct effect on the overall behavior of the fluid film profile. This is 
incorporated in an iterative scheme. 
Therefore, once the deformation of top foil is taken into account, the eccentricity and the attitude angle must be modified in order to 
analyze the overall change in the film thickness. The numerical procedure adapted for modifying the film thickness in an iteration 
scheme is shown below. 
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Where   is the change of eccentricity ratio due to the deformation of top foil and   is the change of attitude angle and n is the 

iteration number. The foil bearing eccentricity is described by the following relationship. The boundary conditions of the correction 
variable η are: 
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Results and discussion 
In order to assess the advantages of the differential quadrature method, the foremost requirement is to look into the accuracy of its 
numerical computations vis-a-vis the available results in the literature. However, in the case of journal bearings with incompressible 
lubrication, harmonic test functions were used in the circumferential direction with polynomial test functions in the y-direction. Also, 
either with incompressible or compressible lubrication, intermediate sampling points for polynomial test functions were taken as the 
zeros of the shifted Chebyshev polynomials while, for the harmonic test functions, the sampling points were obtained from Eq. (12). 
In journal bearings with compressible lubrication, a continuous (gas) film exists all over the journal without any breakup and, 
consequently, the pressure or ψ-function and the correction variable η need to be continuous periodic functions in the circumferential 
direction (see Eqs. (13)). Therefore, in the case of journal bearings with compressible lubrication, use of harmonic test functions was 
necessary for the circumferential (x) direction. However, in the case of journal bearings with incompressible lubrication, the lubricant 
film does not happen to be continuous due to cavitation and, therefore, unlike in the case of compressible lubrication, the pressure is 
not a continuous periodic function in the circumferential direction. Thus, in the case of journal bearings with incompressible 
lubrication, harmonic test functions are really not applicable. 
The effectiveness of the method may be seen from the fact that beginning with the approximation ψ = 0, the solution converges in no 
more than three or four iterations even for eccentricities near unity and very high compressibility numbers. In fact, in any case, the 
solution always converges in two or three iterations if initial guess values of ψ are taken as the values established for some nearby 
parameters (λ, ε, and/or Λ). The following criterion was applied for terminating the iterations of Newton's method: 
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The results presented thus far establish quite conclusively that the generalized differential quadrature method is an accurate numerical 
technique for the solution of lubrication problems. 

 
Load Carrying Capacity and attitude angle  

Once the dimensionless pressure profile is obtained, the load-carrying capacity can then be calculated [18]. The x and z components In 
dimensionless form are: 
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The total dimensionless load is: 

zx www                                                                                               (29) 
Table 3 presents the load carrying capacity and attitude angle for the foil bearing by FDM [45] and GDQM. 

 

 

rε  FDM [14]  GDQ (Present Work) 

* XN

YN  

fε rW  fW fε rW  fW 

0.3 50*1
0 

0.32
31 

11.8
044 

11.9
443 

0.32
6548 

13.818
754  

13.877
233 

0.3 100*
20 

0.32
61 

13.6
15  

13.6
65 

0.3 120*
20 

0.32
79 

13.8
18 

13.8
722 

0.7 50*1
0 

0.87
27 

69.0
906 

72.1
681  

0.87
7592 

71.489
791  

73.595
793 

0.7 100*
20 

0.87
59 

71.2
918 

73.3
726 

0.7 120*
20 

0.87
67 

71.4
898 

73.5
969 

Table 3 - Comparison of load capacity for a foil journal bearing, εr =0.1; Nx =12, Ny=8 
 

 

rε  FDM [14]  GDQ (Present Work) 

Y* NXN  fε  rφ  fφ  fε rφ  fφ 

0.3 50*10 0.3231 68.4325 68.3021 0.326548 70.476857 70.397858 
0.3 100*20 0.3261 70.3127 70.2733 
0.3 120*20 0.3279 70.4771 70.3979 
0.7 50*10 0.8727 41.8896 39.6024 0.877592 42.753241 40.849974 
0.7 100*20 0.8759 42.6598 39.9248 
0.7 120*20 0.8767 42.7529 40.8498 

Table 4 - Comparison of attitude angle for a foil journal bearing, εr =0.1; Nx =12, Ny=8 

 
The results of the prediction on the load-carrying capacity of a foil bearing as a function of the bearing number for different L/D ratio 
is shown in Fig. 4 (a). Figure 4(b) is plotted to show the operating attitude angle of a foil gas bearing versus bearing number for 
different L/D ratio. The attitude angle comparison (Fig. 5(a) ) revealed a comparable agreement for FDM and GDQM. Fig 5(b) 
represents the load comparison between the FDM and the GDQM for a range of eccentricity ratios. Since the main condition here was 
based on matching the minimum film, the load capacity varies slightly at higher eccentricity ratios. In the Fig. 5(c) load capacity for 
rigid and foil bearing have been plotted. 
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Fig. 4-(a) load support versus Λ   (b) attitude angle versus Λ 
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Fig. 5 (a) Attitude Angle Comparison between Finite and Modified Approximation (b) Load Comparison between Finite and Modified Approximation (c) load capacity 

for rigid and foil bearing 
 

Fluid Film Thickness and Hydrodynamic Pressure 
The optimum film profile is one that would result in the highest load carrying capacity. Shown in Fig. 9 is the film thickness for the 
bearing running at 30,000 rpm with assumed hmin of about 10.5 mm. The corresponding film thickness for a rigid bearing is also 
plotted for comparison. The steady-state eccentricity ratio of the foil bearing converged to 1.12 in this case. As shown in Figure 9, a 
foil bearing provides a more uniform profile in the vicinity of hmin than does the rigid bearing. Also, in a foil bearing the convergent 
region of the film gap spans over a greater area and the convergence is more pronounced than that of a rigid bearing due to the 
deformation of the foils under the hydrodynamic pressure. 
Fig. 6(a) represents the film thickness profile between the FDM and GDQM at the mid-section of the bearing running at 30,000 rpm 
with an eccentricity ratio εr = 0.7 , L/D=1. Fig. 6 (b) represents the film thickness profile comparison between a rigid bearing and 
compliant bearing. The overall film profile for a foil bearing spans over a greater area due to the deformation of the foils. 
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Fig. 6 (a) Film Thickness Profile Comparison between FDM & GDQM Approximation at 30,000 rpm (b) Film Thickness Comparison at Mid Section of Bearing at 
30,000 rpm. 



The reduction of the minimum film thickness resulting from the thin top foil is more dominant with a higher static load due to the 
excessive sagging of the top foil between bumps. This phenomenon is clearly shown in Fig. 7(a), which presents the top foil 
deflections, pressure distributions, and film thicknesses for various top foil thicknesses along the bearing midplane. As shown in the 
figure, a thin top foil leads to excessive sagging of the top foil between bumps, resulting in a reduction of the minimum film thickness. 
Therefore, too thin a top foil may decrease the load capacity of the foil bearing. Fig. 7(b) represents the pressure profile comparison 
between the FDM and GDQM at the mid-section of the bearing running at 30,000 rpm with an eccentricity ratio εr = 0.7. These 
profiles were obtained by varying the eccentricity ratio using the bisection method to match the minimum film thickness value at the 
given eccentricity ratio obtained by FDM. The program converged when the minimum film thickness of the bearing matched with the 
minimum film thickness obtained by FDM. Fig. 7(c) represents the pressure profile comparison between a rigid bearing and first-
generation foil bearing whose properties are indicated in Table 2 (Peng, 2003). The operating speed is 30,000 rpm. 
It is worth to point out that Fig. 8 represents the three-dimensional plot obtained by GDQM for a bearing running at 30,000 rpm and 
eccentricity ratio εr=0.7. 

 
  

 
Fig. 7 (a) nondimensional Top foil deflection for various top foil thicknesses, tt=0.05 mm, ω=40 krpm (b) Pressure Profile Comparison between Finite difference and 

generalized differential quadrature method at Mid Section of bearing at 30,000 rpm. (c) Pressure Profile Comparison at Mid Section of Bearing at 30,000 rpm 
 

 
 

Fig. 8 Three Dimensional Pressure Distribution for Foil Bearing at 30,000 rpm based on GDQM. 
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